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ABSTRACT

Considering its mediation role between the poles of rhythm,
harmony, and melody, the bass plays a crucial role in most
music genres. This paper introduces a novel set of
transcription-based high-level features that characterize the
bass and its interaction with other participating instruments.
Furthermore, a new method to model and automatically
retrieve different genre-specific bass playing styles is pre-
sented. A genre classification task is used as benchmark to
compare common machine learning algorithms based on
the presented high-level features with a classification algo-
rithm solely based on detected bass playing styles.

1. INTRODUCTION

After prolonged series of publications focusing on low-
and mid-level features, many works within the MIR com-
munity nowadays emphasize the importance of musical
high-level features. Their application is expected to sig-
nificantly increase the precision in automatic music classi-
fication and similarity search tasks that have limits using
conventional modeling paradigms [2]. Various automatic
transcription techniques allow the extraction of score pa-
rameters like note pitch, velocity (volume), onset time and
duration from polyphonic mixtures. These parameters em-
body the prior foundation for a subsequent feature extrac-
tion. Due to their close relation to musicological expres-
sions, high-level features can be easily understood by mu-
sicologists. Thus, they offer a promising opportunity to
translate existing musicological knowledge into automati-
cally retrievable properties of analyzed music.
The remainder of this paper is organized as follows. In
Sec. 2, we illustrate the goals of this publication and give
an overview over related work in the subsequent section.
We present both novel transcription-based high-level fea-
tures and a new framework to model concepts and classes
for the purpose of music classification in Sec. 4. Evalua-
tion results from different scenarios are presented and dis-
cussed in Sec. 5 and a final conclusion is given in the last
section.
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2. GOALS & CHALLENGES

Our goal is to design transcription-based high-level fea-
tures that enable a better characterization of the bass track
in different songs. Furthermore, we aim to develop a gen-
eral method to translate musicological knowledge into rules
on feature values that can be easily evaluated. This ap-
proach is intended to facilitate the design of an instrument-
related classifier that is trained by musicological knowl-
edge – similar to an expert system. When analyzing real
audio data, the strong dependence of a well-performing
transcription system still remains the biggest challenge.

3. PREVIOUS APPROACHES

Various bass transcription algorithms have been proposed
so far in [13], [11], [6], and [18]. They extract the score
parameters of a bass track in polyphonic audio recordings.
Still, transcription errors related to pitch and onset values
appear due to the high complexity of overlapping instru-
ment spectra. These errors affect the accuracy of the de-
duced high-level features. As shown in [16], high-level
features can be derived from different music domains like
instrumentation, texture, rhythm, dynamics, pitch statis-
tics, melody, and chords. Offering a direct access to the
relevant score parameters, symbolic audio data like MIDI
receives preferential treatment in many publications.
The authors of [4] applied several statistical methods to
derive high-level features from note onsets, pitches, and
intervals. The versatility of complexity-based descriptors
based on entropy, compression, and prediction has been
shown in [15]. A set of musical features derived from the
bass part was introduced in [19]. The authors restricted
themselves to pitch-related features and distinguished be-
tween features characterizing the pitch variability and the
pitch motion. Rhythmical aspects like the swing or syn-
copations have been investigated in various publications as
for instance in [12] and [9]. In [16], [4], [19], and [1], genre
classification solely on high-level features was covered.

4. NEW APPROACHES

4.1 High-level features

High-level features allow to model and quantify musical
properties that are directly observable by experienced mu-
sicologists. These are for instance the key, the time signa-
ture or measure of the harmonic consonance in a piece of
music. They can be deduced from the pitch, the onset time,
and the duration values of all notes.
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Melody-related features
By analyzing the course of theabsolute pitchpA, we de-
rive features from the incidence rate of typical pitch pro-
gressions, such asnotes with constant pitchor chromatic
note sequencesrelated to the overall number of notes and
the overallpitch rangein halftones. With reference to the
simultaneously sounding chords of the harmony track, we
derive a feature from the ratio ofchord noteswithin the
bass line. Besides, we convert the absolute pitch of each
note into itsfunctional pitchpA,F . It represents the inter-
val type between each bass note and the root note of the
simultaneously sounding chord. We consider all interval
types from primes to sevenths (pA,F ∈ [1, 7]), bigger in-
tervals are mapped into this interval range. The incidence
rates of all possible values ofpA,F are used as features that
provide key-independent information about the frequency
of occurrence of different interval types related to the har-
mony accompaniment.
The prior use of root notes, octaves, and fifths of the cur-
rent chord within a bass line does not allow a conclusive
differentiation between major and minor based chords by
exclusively investigating the bass accompaniment. Thus, a
measure ofharmonic ambiguityis calculated proportional
to the occurrence rate of primes and fifths and inversely
proportional to the occurrence rate of thirds as
FHA = P (pA,F = 1) + P (pA,F = 5)− P (pA,F = 3).
We use a simple bar-wise distance measure combining
rhythmic and melodic similarity to detect thedominant
bass pattern. Therefore, we compute a square matrixDτ

containing the similarity between the notes in each pair of
bars. We useDτ (k, m) = 0.5[(1 − Nk,m/Nk)+
(1 − Nm,k/Nm)] whereNi denotes the number of notes
in bari andNi,j denotes the number of notes of bari that
have a note equivalent in barj with the same pitch (pA) and
onset[mod(τ, 1)]. We choose the notes of barndom = n
that minimizes

∑
i Di,n as the dominant pattern since this

bar has the lowest overall distance to the other bars. Subse-
quently, measures oftonal andrhythmic variationare de-
rived from the mean distance between all bars to barndom.
For the rhythmical variation, only the aforementioned on-
set condition of the note equivalent is taken into account.
The interval progression of the bass line is characterized
by three different representations, namely the relative pitch
pR ∈ [−12, 12] (mapped down to a two octave range),
the relative pitch mapped to functional intervalspR,F ∈
[−7, 7] (to provide a representation independent of the key-
type as described above), and the interval directionpR,D ∈
[−1, 1]. Subsequently, several statistical properties such as
entropy and relative number of non-zero elements of the
probabilities of all parameter values are extracted as fea-
tures. The measures ofconstant directionFCD & domi-
nant directionFDD furthermore quantify the temporal ra-
tio of note passages with constant interval direction and
characterize the dominant direction. Thus, they measure
to what extend a melody appears to be fluent. We use
FCD = N [pR,D(i) ≡ pR,D(i + 1)] /NIntervals and
FDD = N(pR,I = 1)/NIntervals.

Rhythm-related features
Thebeat gridcontains the temporal positions and indices
of all beats corresponding to the current time signature.
After its extraction, all note onsett and duration values∆t
are mapped from seconds to certain multiples of the corre-
sponding bar lengths (resulting inτ and∆τ ). This allows
a tempo-independentextraction of rhythm-related features.
We applied a similar approach as described in [12] to de-
rive theswing ratio related to the 8th- and the 16th-note
grid.
A measure ofsyncopationrelated to the both aforemen-
tioned temporal grids is derived by retrieving binary pat-
terns (like for instance “1001” in an 16th-note grid rep-
resenting two notes whereas the first one is played on a
downbeat and the other one on the adjacent off-beat re-
lated to the 8th-note grid).
Based on thedominant bass patternand its dynamic pro-
gression, we take the number of bass notes within each
bar with a velocity above 60% of the maximum occuring
bass note velocity as the measure ofaccent sparsity. Per-
cussionists often use the bass-drum to “double” the main
accents of the bass line. We measure the ratio of the num-
ber of notes that both instruments played rhythmicallyin
unisonto the sum of all notes played by the bass and the
bass drum individually.

Structure-related features
In addition, features characterizing repeating melodic and
rhythmic segments are derived. Therefore, we apply a sim-
ple pattern search algorithm (Correlative Matrix Approach
[14]) on character strings derived from the aforementioned
score parameterspA, τ , and∆τ .
We use the statistical properties mean, median, standard
deviation, minimum, and maximum from each of the pat-
tern parameters length, incidence rate, and mean distance
between similar patters as features. Overall, all single-
and multidimensional high-level features result in an 154-
dimensional feature vector.

4.2 Concept-based framework

To improve genre classification, we aim at modeling com-
mon bass playing styles that are typical for certain mu-
sic genres. Therefore, we apply a generic framework to
translate known musicological properties into explicit re-
strictions on feature values. The assignment of weighting
factors furthermore allows to take the importance of each
property into account. In the following subsections, we in-
troduce the termsconcept, class, andpropertyas the major
components of the framework. Afterwards we explain how
relevance valuesfor both properties and classes are derived
to measure their significance to the investigated piece of
music and close with a detailed example. Hereafter, multi-
dimensional variables are denoted in bold print.

Concepts & classes
The termconceptrepresents a general approach to catego-
rize music. Each concept is defined by a set ofclassesas
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Figure 1. Concept-based framework

shown in Fig. 1. In this paper, we apply the conceptsBass-
PlayingStyle(denoted asSB), which represents a common
way of playing the bass in a specific music genre andGenre
(denoted asG), which is a common category for musi-
cologists. One well-known example is the bass playing
style walking bass (defined as classWalkingBass), which
is widely applied by bass players in different music genres
related toSwing. It is covered as an example in the end of
this section. The assignment between classes of both con-
cepts is shown in Fig. 2.

Properties
Each class is defined by a number ofpropertiesP . They
translate its musicological description into explicit restric-
tions on the values of certainfeaturesF .
We discernmandatory properties(M) and frequent prop-
erties(F). Mandatory properties are strictly need to be ful-
filled whereas frequent properties are not mandatory for a
certain class. Aweighting factor0 ≤ gi ≤ 1 is assigned
to each frequent property.gi is proportional to the impor-
tance of the corresponding property with regard to the cur-
rent class.
Furthermore, properties are eitheromnipresent(O) or
conditional (C). Omnipresent properties are constantly
valid, whereas the validity of conditional properties de-
pends on a certain condition. This may for instance be the
presence of an instrument that a feature and thus a property
is related to. Only if the condition is fulfilled, the corre-
sponding property needs to be considered. Generally, the
indices ofP imply the corresponding property type. Ex-
amples are given in the end of this section. We derived the
weighting factors and thresholds of all properties used in
this paper from experiments with development data sam-
ples, which did not belong to the evaluation set.

Relevance values
Theproperty relevance valueγP measures to what extent
a propertyP is fulfilled (γP = 1) or not (γP = 0). It is
derived from the corresponding feature valueF by using
a rating functionr(F ). This function depends on the type
of restriction on the feature valueF that is defined byP .
For instance, we useγP = r (F ) = 0.5[sgn(F − V ) + 1]
to match the propertyP → F isBiggerThan V . The

A frequent use of chord tones is mandatory.
P1,MO → FChordToneRatio isBiggerThan 0.3

2) The melodic direction is often constant within each bar.
(important property - weighting factorg2 = 0.7)
P2,F O → FConstantDirection isBiggerThan 0.7

3) If quarter notes are primarily used (such as in slow and
mid-tempo Jazz songs), there is a high swing factor related to
the eighth note grid. (important property - weighting factor
g3 = 0.8)
if Condition( FDominantRhythmicalGrid is 4 )
P3,F C → FSwingF actor,8 isBiggerThan 0.7

4) If eighth notes are primarily used (such as in up-tempo Jazz
songs), there is a high swing factor related to the sixteenth
note grid. (important property - weighting factorg4 = 0.8)
if Condition( FDominantRhythmicalGrid is 8 )
P4,F C → FSwingF actor,16 isBiggerThan 0.7

5) Chromatic note passages are occasionally used. (less im-
portant property - weighting factorg5 = 0.3)
P5,F O → FChromatics isRelativelyHigh

Table 1. Properties of the classWalkingBass(concept
BassPlayingStyle)

rating function is designed in such a way that0 ≤ γP ≤ 1
is assured.
Subsequently, theclass relevance valueγC is derived for
each classC from its corresponding property relevance
values.γC quantifies to what extend a certain class is rele-
vant for the musicological description of an analyzed piece
of music.
We suggest the following algorithm to comply with the
different property types. If all mandatory properties are
given to be true,γC is calculated as a weighted sum over
all frequent propertiesγPF

according to their normalized
weighting factorŝg (

∑
ĝi = 1). Otherwise it is set to zero.

This algorithm can be summarized as follows:

γC =

{∑
i ĝiγPF,i

if γPM,j
= 1 ∀ PM,j ∈ PM ,

0 else
(1)

Example
As shown in Table 1, the classWalkingBassof the concept
BassPlayingStyleis defined by 5 feature-related properties
that are derived from musicological properties of this style.

5. EVALUATION

We use two data sets consisting of symbolic (MIDI) and
real audio (AUDIO) each with 50 respectively 40 excerpts
from each of the genresPopRock (POP), Swing
(SWI), Latin (LAT), Funk (FUN), Blues(BLU), andMet-
alHardRock(MHR). All excerpts are derived from instru-
mental solo parts of the melody instruments between 20
and 35 seconds of length. Fig. 3 depicts all processing
steps that precede the evaluation.
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5.1 Transcription & Pre-processing

We used the Transcription Toolbox [6] to extract the score
parameters from real audio data. It provides algorithms to
extract the bass, melody, harmony, and drum part as well
as the beat grid information. As explained in Sec. 4.1, our
aim is to focus on the bass and its interaction with the par-
ticipating instruments. Concerning symbolic audio data,
score parameters are directly extracted.

5.2 Feature Selection (FS) and Feature Space
Transformation (FST)

The following feature selection and feature space transfor-
mation techniques have been utilized to reduce the dimen-
sionality of the feature space.

Inertia Ratio Maximization using Feature Space Pro-
jection (IRMFSP).
IRMFSP was proposed in [17]. This FS algorithm is moti-
vated by the ideas similar to Fisher’s discriminant analysis.
During each iteration of the algorithm, we look for the fea-
ture maximizing the ratio of between-class inertia to the
total-class inertia. To avoid the next chosen feature to pro-
vide the same information on the next iteration, all features
are orthogonalized to the selected one. In this evaluation
we use the ISMFSP algorithms with the modifications pro-
posed in [8].

Linear Discriminant Analysis (LDA)
LDA is one of the most often used supervised FST meth-
ods [10]. It is successfully applied as a pre-processing for
audio signal classification. Original feature vectors are lin-
early mapped into new feature space guaranteeing a max-

imal linear separability by maximization of the ratio of
between-class variance to the within-class variance. This
mapping is conducted by multiplying the originalK × N
dimension feature matrixX with the transformation ma-
trix T. Reducing the dimension of the transformed feature
vector fromN to D ≤ N is achieved by considering only
the firstD column vectors ofT for multiplication.

Generalized Discriminant Analysis (GDA)
Real-world classification routines often have to deal with
non-linear problems, thus linear discrimination in the orig-
inal feature space is often not possible. The idea of the FST
technique GDA [3] is to map the features into higher di-
mensional (sometimes infinity dimensional) space, where
the linear discrimination is possible. Dealing with a high
dimensional space leads to an increase of the computation
effort. To overcome this problem, the so calledkernel trick
is applied. The key idea of the kernel trick is to replace
the dot product in a high-dimensional space with a kernel
function in the original feature space.

5.3 Classification

We applied 4 known methods (SVM, GMM, NB, and kNN)
as well as a novel concept-based approach for the purpose
of classification.

Support Vector Machines
A Support Vector Machine (SVM) is a discriminative clas-
sifier, attempting to generate an optimal decision plane be-
tween feature vectors of the training classes [20]. Com-
monly for real-world applications, classification with lin-
ear separation planes is not possible in the original feature
space. The transformation to the higher dimensional space
is done using above mentioned kernel trick (we applied
the RBF kernel in this paper). Transformed into a high-
dimensional space, non-linear classification problems can
become linearly solvable.

Gaussian Mixture Models
Gaussian Mixture Models (GMM) are commonly used gen-
erative classifiers.Single data samples of the class are inter-
preted as being generated from various sources and each
source is modeled by a single multivariate Gaussian. The
probability density function (PDF) is estimated as a
weighted sum of the multivariate normal distributions. The
parameters of a GMM can be estimated using the
Expectation-Maximization algorithm [5].
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Naive Bayes Classifier
Naive Bayes classifier (NB) is a simple probabilistic clas-
sifier. NB uses a strong assumption of feature dimensions
being statistically independent and thus takes into account
only means and variances over the feature dimensions for
all training data of the class. Recently, applicability andef-
ficiency of NB classifiers were discussed in detail in [21].

k-Nearest Neighbor
With k-Nearest Neighbor (kNN), the classification is based
on the class assignment of the closest training examples in
the feature space [7]. We used the Euclidean distance here.
This type of discriminative classifier is also referred as in-
stance based learning. The level of generalization of kNN
can be tuned by adjusting the number of nearest neighbors
k taken into account.

Novel approach: concept-based classifier
Using Eq. 1, we derive a class relevance valueγSBi

≡ γCi

for each class of the conceptBassPlayingStyle. We defined
one common bass playing style for each of the 6 genres
that were considered in the evaluation (see Sec. 5), namely
WalkingBass(SWI), BluesShuffle(BLU), FunkSyncopated
(FUN), SteadyRiff(MHR), BossaNovaBass(LAT), and
ChordRootAccompaniment(POP). For our experiments, we
used 5 different properties for each class.Using the assign-
ment between the classes of both concepts as depicted in
Fig. 2, the concept-based classifier estimates the genreĜ =
Gj that is assigned to the bass playing styleSBi with the
highest class relevance valueγSBi

. In case two or more
bass playing styles related to different genres obtain the
same class relevance values, the classification is consid-
ered to be correct if at least one of the candidates is related
to the correct genre and false if not. As a proof of concept,
we performed the evaluation experiment using the concept-
based classifier on the MIDI data set.

6. RESULTS

Table 3 gives an overview over the classification scores
for different FS / FST combination. For each combina-
tion, the parametrization with the best results is depicted.
Further evaluation parameters such as the number of gaus-
sians for the GMM classifiers,k for the kNN classifiers,
and the number of dimensions after IRMFSP are given
in brackets. We performed a 25-fold cross validation to
derive mean classification scores and their standard devi-
ations (given in brackets below) for each classifier. As
shown there, best mean classification accuracies for the
MIDI and AUDIO data set of81.47% and46.85% have
been achieved applying a combined IRMFSP - GDA pre-
processing for both data sets. Above all, we expect trans-
cription errors affecting note pitch values, onset values and
beat grid information to cause significantly lower classifi-
cation scores for real audio data. For both data sets, the
application of feature selection and feature space transfor-
mation algorithms clearly increases the accuracy values of
the subsequent classifiers.

BLU FUN LAT MHR POP SWI

BLU 68.0 - 4.0 - - 28.0
FUN 28.0 46.0 4.0 4.0 4.0 14.0
LAT 16.0 - 70.0 - 2.0 12.0
MHR 34.0 8.0 6.0 34.0 2.0 16.0
POP 36.0 - 20.0 2.0 6.0 36.0
SWI 36.0 - 22.0 - - 42.0

Table 2. Confusion matrix of the concept-based classifier
(MIDI data set) in %

As depicted in Table 2, the concept-based classifier
achieved a mean classification accuracy of44.3% varying
in a strong way for different genres. Best results have been
obtained forLatin (70.0%) andBlues(68.0%). The low re-
sults forPop (6.0%) andMetalHardRock(34.0%) lead to
the assumption, that modeling only one bass playing style
per genre is not sufficient due to the high variability in the
applied data set. Further steps include the evaluation based
on a larger database.

7. CONCLUSIONS & FUTURE WORK

In this paper, we introduced a novel set of transcription-
based high-level features related to the rhythmic, melodic,
harmonic, and structural description of bass lines. Fur-
thermore, we presented a new approach to model musi-
cal knowledge of musical styles as properties related to the
values of transcription-based high-level features. The main
advantage of concept-based classification approach is that
significantly fewer features are necessary to model each
class as in common machine learning approaches. Future
steps include modeling additional genre-specific bass play-
ing styles as well as transferring the proposed method onto
other frequently used instruments like the guitar.
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