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ABSTRACT 2. GOALS & CHALLENGES

Our goal is to design transcription-based high-level fea-
Considering its mediation role between the poles of rhythm,tures that enable a better characterization of the bads trac
harmony, and melody, the bass plays a crucial role in mostin different songs. Furthermore, we aim to develop a gen-
music genres. This paper introduces a novel set of eral method to translate musicological knowledge intogule
transcription-based high-level features that charatéhie  on feature values that can be easily evaluated. This ap-
bass and its interaction with other participating instratse  proach is intended to facilitate the design of an instrument
Furthermore, a new method to model and automatically related classifier that is trained by musicological knowl-
retrieve different genre-specific bass playing styles & pr edge — similar to an expert system. When analyzing real
sented. A genre classification task is used as benchmark tawdio data, the strong dependence of a well-performing

compare common machine learning algorithms based ontranscription system still remains the biggest challenge.
the presented high-level features with a classification-alg
rithm solely based on detected bass playing styles. 3. PREVIOUS APPROACHES
Various bass transcription algorithms have been proposed
1. INTRODUCTION so far in [13], [11], [6], and [18]. They extract the score
parameters of a bass track in polyphonic audio recordings.
After prolonged series of publications focusing on low-  Still, transcription errors related to pitch and onset ealu
and mid-level features, many works within the MIR com- appear due to the high complexity of overlapping instru-
munity nowadays emphasize the importance of musicalment spectra. These errors affect the accuracy of the de-
high-level features. Their application is expected to sig- duced high-level features. As shown in [16], high-level
nificantly increase the precision in automatic music classi features can be derived from different music domains like
fication and similarity search tasks that have limits using instrumentation, texture, rhythm, dynamics, pitch statis
conventional modeling paradigms [2]. Various automatic tics, melody, and chords. Offering a direct access to the
transcription techniques allow the extraction of score pa- relevant score parameters, symbolic audio data like MIDI
rameters like note pitch, velocity (volume), onset time and receives preferential treatment in many publications.
duration from polyphonic mixtures. These parameters em-The authors of [4] applied several statistical methods to
body the prior foundation for a subsequent feature extrac-derive high-level features from note onsets, pitches, and
tion. Due to their close relation to musicological expres- intervals. The versatility of complexity-based descripto
sions, high-level features can be easily understood by MuU-pased on entropy, Compression, and prediction has been
sicologists. Thus, they offer a promising opportunity to shown in [15]. A set of musical features derived from the
translate existing musicological knowledge into automati bass part was introduced in [19]. The authors restricted
cally retrievable properties of analyzed music. themselves to pitch-related features and distinguished be
The remainder of this paper is organized as follows. In tween features characterizing the pitch variability arel th
Sec. 2, we illustrate the goals of this publication and give pitch motion. Rhythmical aspects like the swing or syn-
an overview over related work in the subsequent section.copations have been investigated in various publicatiens a
We present both novel transcription-based high-level fea- for instance in [12] and [9]. In [16], [4], [19], and [1], gear
tures and a new framework to model concepts and classeglassification solely on high-level features was covered.
for the purpose of music classification in Sec. 4. Evalua-
tion results from different scenarios are presented and dis
cussed in Sec. 5 and a final conclusion is given in the last
section. 4.1 High-level features

4. NEW APPROACHES

High-level features allow to model and quantify musical
Permission to make digital or hard copies of all or part of thork for properties that are directly observable by experienced mu-
personal or classroom use is granted without fee provideiicthpies are sicologists. These are for instance the key, the time signa-
not made or distributed for profit or commercial advantagethat copies ture or measure of the harmonic consonance in a piece of
bear this notice and the full citation on the first page. music. They can be deduced from the pitch, the onset time,
(© 2009 International Society for Music Information Retrieva and the duration values of all notes.
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Melody-related features Rhythm-related features

By analyzing the course of thebsolute pitctp 4, we de- Thebeat gridcontains the temporal positions and indices
rive features from the incidence rate of typical pitch pro- of all beats corresponding to the current time signature.
gressions, such amtes with constant pitchr chromatic After its extraction, all note onsetand duration valueAt

note sequenceelated to the overall number of notes and are mapped from seconds to certain multiples of the corre-
the overallpitch rangein halftones. With reference to the sponding bar lengths (resulting inand A7). This allows
simultaneously sounding chords of the harmony track, we a tempo-independentextraction of rhythm-related feature
derive a feature from the ratio @hord noteswithin the We applied a similar approach as described in [12] to de-
bass line. Besides, we convert the absolute pitch of eachrive the swing ratiorelated to the 8th- and the 16th-note
note into itsfunctional pitchp4 r. It represents the inter-  grid.

val type between each bass note and the root note of theA measure ofsyncopatiorrelated to the both aforemen-
simultaneously sounding chord. We consider all interval tioned temporal grids is derived by retrieving binary pat-
types from primes to seventhg{ » € [1,7]), bigger in- terns (like for instance “1001” in an 16th-note grid rep-
tervals are mapped into this interval range. The incidenceresenting two notes whereas the first one is played on a
rates of all possible values pfy r are used as features that downbeat and the other one on the adjacent off-beat re-
provide key-independent information about the frequency lated to the 8th-note grid).

of occurrence of different interval types related to the har Based on thelominant bass patterand its dynamic pro-
mony accompaniment. gression, we take the number of bass notes within each
The prior use of root notes, octaves, and fifths of the cur- bar with a velocity above 60% of the maximum occuring
rent chord within a bass line does not allow a conclusive bass note velocity as the measureao€ent sparsity Per-
differentiation between major and minor based chords by cussionists often use the bass-drum to “double” the main
exclusively investigating the bass accompaniment. Thus, aaccents of the bass line. We measure the ratio of the num-
measure oharmonic ambiguitys calculated proportional  ber of notes that both instruments played rhythmicadly

to the occurrence rate of primes and fifths and inversely unisonto the sum of all notes played by the bass and the
proportional to the occurrence rate of thirds as bass drum individually.

Frua= P(pA,F e 1) + P(pA1F e 5) - P(pA,F e 3)

We use a simple bar-wise distance measure combiningStructure-related features

rhythmic and melodic similarity to detect thdominant In addition, features characterizing repeating melodit an

bass pattern Therefore, we compute a square malffix rhythmic segments are derived. Therefore, we apply a sim-
containing the similarity between the notes in each pair of ple pattern search algorithr€@rrelative Matrix Approach
bars. We useD,(k,m) = 0.5[(1 — Ngum/Ng)+ [14]) on character strings derived from the aforementioned

(1 — Ny x/Np,)] WhereN; denotes the number of notes score parameteysy, 7, andAr.

in bari and N; ; denotes the number of notes of bahat We use the statistical properties mean, median, standard
have a note equivalentin bawith the same pitchy(4) and deviation, minimum, and maximum from each of the pat-
onsetmodr, 1)]. We choose the notes of bay,,, = n tern parameters length, incidence rate, and mean distance
that minimizesy . D; ,, as the dominant pattern since this between similar patters as features. Overall, all single-
bar has the lowest overall distance to the other bars. Subseand multidimensional high-level features result in an 154-
quently, measures @bnal andrhythmic variationare de- dimensional feature vector.

rived from the mean distance between all bars tohay,.

For the r_h_ythmical variation, _only the aforementioned ON- 4.2 Concept-based framework

set condition of the note equivalent is taken into account.

The interval progression of the bass line is characterizedTo improve genre classification, we aim at modeling com-
by three different representations, namely the relatitghpi mon bass playing styles that are typical for certain mu-
pr € [—12,12] (mapped down to a two octave range), Sic genres. Therefore, we apply a generic framework to

the relative pitch mapped to functional intervalg € translate known musicological properties into explici re
[-7, 7] (to provide a representation independent of the key- strictions on feature values. The assignment of weighting
type as described above), and the interval diregiion factors furthermore allows to take the importance of each

[—1,1]. Subsequently, several statistical properties such asproperty into account. In the following subsections, we in-

entropy and relative number of non-zero elements of the troduce the termsonceptclass andpropertyas the major

probabilities of all parameter values are extracted as fea-components of the framework. Afterwards we explain how

tures. The measures obnstant directionfFop & domi- relevance valuefor both properties and classes are derived

nant directionFp p furthermore quantify the temporal ra- to measure their significance to the investigated piece of

tio of note passages with constant interval direction and music and close with a detailed example. Hereafter, multi-

characterize the dominant direction. Thus, they measuredimensional variables are denoted in bold print.

to what extend a melody appears to be fluent. We use

Fep = Nlprp(i) =prp(E+1)] /Nintervais and Concepts & classes

Fpp = N(pr,1 = 1)/Nrntervais- The termconceptrepresents a general approach to catego-
rize music. Each concept is defined by a setlatsesas
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Concept A frequent use of chord tones is mandatory.
PM 1 l/’ \\ Pl,]\/IO — FCho'rdToneRatio I SBI gger Than 03
Fo ™ I ' 2) The melodic direction is often constant within each bar.
P 2 1 X A
F, M,2 ! I (important property - weighting factgr. = 0.7)
F PF’1 ,YP ,,,,91 t : P2,F'O — FConstantDirection | SBI gger Than 0.7
3 P ! gé b Cy > 3) If quarter notes are primarily used (such as in slow and
Fa F2 o vp ~__7 mid-tempo Jazz songs), there is a high swing factor related t
2 the eighth note grid. (important property - weighting facto
Property Property Property Class g3 = 0.8)
relevance weighting relevance if Condition( FDominant_Rhyt_hmicalGrid is 4)
Features Properties Classes P3 rc — FswingFactor,s | SBi gger Than 0.7
(F) (P) (€ 4) If eighth notes are primarily used (such as in up-tempa Jaz
songs), there is a high swing factor related to the sixteenth
Figure 1. Concept-based framework note grid. (important property - weighting facter = 0.8)

if Condition( FDominant}?hyth:micalGrid is8 )
Py,rc — FswingFactor,16 1 SBi gger Than 0.7

5) Chromatic note passages are occasionally used. (less im-
L . portant property - weighting factgs = 0.3)

shown in Fig. 1. In this paper, we apply the concégass- D5 70 — Fnromatics | SRel ati vel yH gh
PlayingStylddenoted a$ B), which represents a common
way of playing the bass in a specific music genre@edre
(denoted ag), which is a common category for musi- Table 1. Properties of the clasg/alkingBass(concept
cologists. One well-known example is the bass playing BassPlayingSty)e
style walking bass (defined as clasglkingBasys which
is widely applied by bass players in different music genres
related toSwing It is covered as an example in the end of rating function is designed in such a way that vp < 1
this section. The assignment between classes of both conis assured.

cepts is shown in Fig. 2. Subsequently, thelass relevance valug: is derived for
each clasg” from its corresponding property relevance

Properties values.y¢ quantifies to what extend a certain class is rele-

Each class is defined by a numbermobpertiesP. They vant for the musicological description of an analyzed piece

translate its musicological description into explicittres of music.

tions on the values of certafeaturesF'. We suggest the following algorithm to comply with the

We discernrmandatory propertie$M) and frequent prop-  different property types. If all mandatory properties are
erties(F). Mandatory properties are strictly need to be ful- given to be truey¢ is calculated as a weighted sum over
filled whereas frequent properties are not mandatory for aall frequent propertiesp,. according to their normalized
certain class. Aveighting factor0 < g; < 1is assigned  weighting factorgy (3 g; = 1). Otherwise it is set to zero.
to each frequent property; is proportional to the impor-  This algorithm can be summarized as follows:
tance of the corresponding property with regard to the cur-

rent class. ~ .

Furthermore, properties are eithemnipresent(O) or No = {Z" gives ey, =1V Paj € Par,y
conditional (C). Omnipresent properties are constantly 0 else

valid, whereas the validity of conditional properties de-
pends on a certain condition. This may for instance be the
presence of an instrument that a feature and thus a propert
is related to. Only if the condition is fulfilled, the corre-
sponding property needs to be considered. Generally, th
indices of P imply the corresponding property type. Ex-
amples are given in the end of this section. We derived the
weighting factors and thresholds of all properties used in
this paper from experiments with development data sam-
ples, which did not belong to the evaluation set. 5. EVALUATION

(1)

Example

Ms shown in Table 1, the cla$¥alkingBas®f the concept
BassPlayingStyles defined by 5 feature-related properties
hat are derived from musicological properties of thisestyl

Relevance values We use two data sets consisting of symbolic (MIDI) and
The property relevance valugr measures to what extent real audio (AUDIO) each with 50 respectively 40 excerpts
a propertyP is fulfilled (yp = 1) or not (yp = 0). Itis from each of the genresPopRock (POP), Swing
derived from the corresponding feature vallidby using (SWI), Latin (LAT), Funk(FUN), Blues(BLU), andMet-
arating functionr(F'). This function depends on the type alHardRock(MHR). All excerpts are derived from instru-
of restriction on the feature valué that is defined byP. mental solo parts of the melody instruments between 20
For instance, we usgpr = r (F)) = 0.5[sgn(F — V') 4 1] and 35 seconds of length. Fig. 3 depicts all processing
to match the property? — F'i sBi gger Than V. The steps that precede the evaluation.
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Concepts BassPlayingStyle

WalkingBass ‘ FunkSyncopated ‘

T <
YsB 1 BossaNovaBass 'YSB3 ~—_ -

. YsBy - T

Figure 2. Assignment between the classes of the cond@assPlayingStylandGenre

|__AUDIO | | MIDI imal linear separability by maximization of the ratio of
betwegn-plass variance to the- wit.hin-class.vgriance. This
PR mapping is conducted by multiplying the origin&l x N
v dimension feature matriX with the transformation ma-
\ Feature extraction trix T. Reducing the dimension of the transformed feature
i High-level features i vector fromN to D < N is achieved by considering only
Pattern recognition Concept-based the firstD column vectors ofl’ for multiplication.
based classification classification
| v Evaluation v | Generalized Discriminant Analysis (GDA)

Real-world classification routines often have to deal with
non-linear problems, thus linear discrimination in theyeri
inal feature space is often not possible. The idea of the FST
technique GDA [3] is to map the features into higher di-
mensional (sometimes infinity dimensional) space, where
5.1 Transcription & Pre-processing the linear discrimination is possible. Dealing with a high
dimensional space leads to an increase of the computation
We used the Transcription Toolbox [6] to extract the score effort. To overcome this problem, the so calleinel trick
parameters from real audio data. It provides algorithms to jg applied. The key idea of the kernel trick is to replace

extract the bass, melody, harmony, and drum part as wellthe dot product in a high-dimensional space with a kernel
as the beat grid information. As explained in Sec. 4.1, our fynction in the original feature space.

aim is to focus on the bass and its interaction with the par-
ticipating instruments. Concerning symbolic audio data
score parameters are directly extracted.

Figure 3. Processing flow-chart

' 5.3 Classification

We applied 4 known methods (SVM, GMM, NB, and kNN)
as well as a novel concept-based approach for the purpose

5.2 Feature Selection (FS) and Feature Space e
of classification.

Transformation (FST)

The following feature selection and feature space transfor Support Vector Machines
mation techniques have been utilized to reduce the dimen-A Support Vector Machine (SVM) is a discriminative clas-

sionality of the feature space. sifier, attempting to generate an optimal decision plane be-
tween feature vectors of the training classes [20]. Com-

Inertia Ratio Maximization using Feature Space Pro- monly for real-world applications, classification within

jection (IRMFSP). ear separation planes is not possible in the original featur

IRMFSP was proposed in [17]. This FS algorithm is moti- space. The transformation to the higher dimensional space
vated by the ideas similar to Fisher’s discriminant analysi is done using above mentioned kernel trick (we applied
During each iteration of the algorithm, we look for the fea- the RBF kernel in this paper). Transformed into a high-
ture maximizing the ratio of between-class inertia to the dimensional space, non-linear classification problems can
total-class inertia. To avoid the next chosen feature te pro become linearly solvable.

vide the same information on the next iteration, all feadure

are orthogonalized to the selected one. In this evaluationGaussian Mixture Models

we use the ISMFSP algorithms with the modifications pro- Gaussian Mixture Models (GMM) are commonly used gen-

posed in [8]. erative classifiers.Single data samples of the class ae int
preted as being generated from various sources and each
Linear Discriminant Analysis (LDA) source is modeled by a single multivariate Gaussian. The

LDA is one of the most often used supervised FST meth- probability density function (PDF) is estimated as a
ods [10]. It is successfully applied as a pre-processing for weighted sum of the multivariate normal distributions. The
audio signal classification. Original feature vectorsare| parameters of a GMM can be estimated using the
early mapped into new feature space guaranteeing a maxkxpectation-Maximization algorithm [5].
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| BLU FUN LAT MHR POP  SWI

Naive Bayes Classifier BLU | 680 - 40 - - 28.0
. ige . . A FUN 28.0 46.0 4.0 4.0 4.0 14.0
Naive Bayes classifier (NB) is a simple probabilistic clas- LAT | 160 - 700 - 20 120
sifier. NB uses a strong assumption of feature dimensions MHR | 340 80 60 340 20 160
. .. . . POP 36.0 - 20.0 2.0 6.0 36.0
being statistically independent and thus takes into adcoun SWi | 360 - 220 - . 42.0

only means and variances over the feature dimensions for

all training data of the class. Recently, applicability @fd  Tapje 2. Confusion matrix of the concept-based classifier
ficiency of NB classifiers were discussed in detail in [21]. (MIDI data set) in %

k-Nearest Neighbor

With k-Nearest Neighbor (kNN), the classification is based As depicted in Table 2, the concept-based classifier
on the class assignment of the closest training examples irachieved a mean classification accuracy48% varying

the feature space [7]. We used the Euclidean distance heren a strong way for different genres. Best results have been
This type of discriminative classifier is also referred as in obtained foiLatin (70.0%) andBlues(68.0%). The low re-
stance based learning. The level of generalization of kNN sults forPop (6.0%) andMetalHardRock(34.0%) lead to

can be tuned by adjusting the number of nearest neighborghe assumption, that modeling only one bass playing style

k taken into account. per genre is not sufficient due to the high variability in the
applied data set. Further steps include the evaluatiordbase

Novel approach: concept-based classifier on a larger database.

Using Eq. 1, we derive a class relevance valgg, = ¢,

for each class of the concdpassPlayingStyleNe defined 7. CONCLUSIONS & FUTURE WORK

one common bass playing style for each of the 6 genres

that were considered in the evaluation (see Sec. 5), namelyn this paper, we introduced a novel set of transcription-
WalkingBas$SWI), BluesShuffléBLU), FunkSyncopated  based high-level features related to the rhythmic, melodic
(FUN), SteadyRiff(MHR), BossaNovaBasfl_AT), and harmonic, and structural description of bass lines. Fur-
ChordRootAccompanimefROP). For our experiments, we thermore, we presented a new approach to model musi-
used 5 different properties for each class.Using the assign cal knowledge of musical styles as properties related to the
ment between the classes of both concepts as depicted ivalues of transcription-based high-level features. Thimma
Fig. 2, the concept-based classifier estimates the gérre ~ advantage of concept-based classification approach is that
G; that is assigned to the bass playing stglB; with the significantly fewer features are necessary to model each
highest class relevance valyep,. In case two or more  class as in common machine learning approaches. Future
bass playing styles related to different genres obtain thesteps include modeling additional genre-specific bass play
same class relevance values, the classification is considing styles as well as transferring the proposed method onto
ered to be correct if at least one of the candidates is relateddther frequently used instruments like the guitar.

to the correct genre and false if not. As a proof of concept,

we performed the evaluation experiment using the concept- 8. ACKNOWLEDGMENTS

based classifier on the MIDI data set. )
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Dataset | FS/FST | Dim. | SYM | GMM(2) GMM(@3) GMM(5) GMM(10) | NB | kNN(1) KNN(5)  kNN(10)
MIDI 154 | 69.13 | 67.45 66.28 59.52 60.31 60.03 | 66.88 64.17 62.69
(8.34) | (9.08) (9.45) (6.21) (5.97) (7.27) | (651)  (5.61)  (7.39)
LDA 5 63.06 | 59.24 61.22 53.44 59.23 60.50 | 60.14 62.15 62.38
(7.20) | (5.10) (6.69) (7.43) (14.43) | (7.33) | (6.97)  (7.66)  (8.53)
GDA(y = 277) 5 77.60 | 77.60 77.60 44.04 18.73 18.37 | 77.60 77.60 77.60
(7.65) | (7.65) (7.65) (8.31) (9.54) (6.27) | (7.65)  (7.65)  (7.65)
IRMFSP(20) 20 73.82 | 58.70 65.07 63.75 64.21 57.99 | 78.06  71.70 68.85
(7.89) | (8.08) (8.23) (10.20) (7.08) (6.38) | (7.31)  (6.84)  (8.72)
IRMFSP(80) + LDA 5 7215 | 69.87 69.34 67.95 65.20 69.65 | 69.45 70.48 69.66
(8.93) | (10.67) (7.60) (9.81) (11.70) | (852) | (9.02)  (7.93)  (6.65)
IRMFSP(40) + GDAY = 27%) | 5 76.99 | 19.32 20.15 13.30 16.09 18.37 | 81.10  81.47 81.47
(13.88) | (5.07) (9.26) (5.60) (2.85) (6.27) | (6.39)  (6.20)  (6.20)
AUDIO | - 154 | 41.33 | 33.45 34.95 33.73 33.80 27.24 | 36.54 31.42 32.25
(8.33) | (8.59) (8.98) (10.33) (10.62) | (8.33) | (10.35) (11.61)  (9.66)
LDA 5 3298 | 32.82 30.16 28.90 28.76 34.25 | 31.16 33.84 34.10
(7.39) | (7.46) (6.88) (7.95) (8.33) (758) | (9.00)  (8.66)  (8.28)
GDA(y = 279) 5 4274 | 4274 42.74 27.09 15.02 12.79 | 42.74 4274 4274
(11.53) | (11.53) (11.53) (15.08) (6.90) (6.63) | (11.53) (11.53) (11.53)
IRMFSP(40) 40 4326 | 39.19 38.31 39.83 36.62 26.69 | 45.23 42.04 37.83
(11.76) | (10.83) (10.56) (12.93) (9.86) (8.87) | (11.70)  (12.06)  (10.67)
IRMFSP(20) + LDA 5 4380 | 41.66 42.28 41.32 40.58 4390 | 35.29 40.69 41.48
(10.61) | (11.16) (10.68) (11.50) (1352) | (12.09) | (9.10)  (10.75)  (10.24)
IRMFSP(40) + GDAY = 27°) | 5 46.85 | 46.85 46.85 26.59 16.64 12.79 | 46.85 46.85 46.85
9.73) | (9.73) (9.73) (13.75) (7.10) (6.63) | (9.73)  (9.73)  (9.73)

Table 3. Mean classification accuracy [%)] for the MIDI and AUDIO datt (standard deviation [%)] given in brackets)
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